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Enron: The Smartest Guys in the Room

I Enron was one of world’s leading electricity, natural gas,
pulp and paper, and communications companies

I Seventh largest U.S. company
I Revenue ≈ $111 billion in 2000
I Fortune: "America’s Most Innovative Company" for 6

consecutive years
Kenneth Lay, Enron chairman and CEO: "We are proud to receive this accolade for a sixth year. It reflects our
corporate culture which is driven by smart employees who continually come up with new ways to grow our business."
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Enron: The Collapse

I Discoveries of highly irregular (fraud) accounting
procedures done throughout the 1990’s by Enron and
Arthur Andersen

I In November, 2001 the stock price dropped from $90 to ≈
30 cents

I Executives unloaded stock worth millions of dollars while
encouraging others to buy

I In December, 2001 Enron filed for Bankruptcy
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Enron: The Problem

I An Enron email dataset was made public by the U.S.
Department of Justice

I Might detections of excessive activity in sent email indicate
interesting events?

A Goal:
Develop and apply a theory of scan statistics on random graphs
to perform change point/anomaly detection in graphs and in
time series of graphs
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Scan Statistics

I Used to investigate some random field X for possible
presence of a local signal

I "moving window analysis"
I scan a small "window" over the data
I calculate some locality statistic for each window

I average pixel value for an image
I number of events for point pattern

I scan statistic M(X ) ≡ max of these local statistics
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Hypotheses

I H0: homogeneity
I HA: local subregion with excess activity

Inference: PH0 [M(X ) ≥ cα] = α

If the maximum of the local statistics is large enough, then can
infer that there exists a local region of excessive activity
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Scan Statistics on Graphs

Directed graph: D = (V , A)

I order: n = |V (D)|
I size: |A(D)|
I k th-order neighborhood of v ∈ V (D):

Nk [v ; D] = {w ∈ V (D) : d(v , w) ≤ k}
I scan region (induced subdigraph): Ω(Nk [v ; D])

I locality statistic (e.g., size): Ψk (v) = |A(Ω(Nk [v ; D]))|
I "scale-specific" scan statistic: Mk (D) = maxv∈V (D)Ψk (v)
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Variable-Scale Scan Statistic

I Let K ⊂ {1, . . . , n − 1} be a collection of scales
I Let Ψ′

k denote be a scale-standardized version of Ψk

I Want gk ,α(· ) s.t. Ψ′
k = gk ,α(Ψk (v)) satisfies

P[Ψ′
k ≥ cα] ≈ α ∀ v ∈ V (D), k ∈ K

MK (D) = max
k∈K

max
v∈V (D)

Ψ′
k (v)

Reject for large values of MK (D)

Kendall Giles Scan Statistics on Enron Graphs 12/35



Outline

Introduction
Citations
Motivation

Review of Scan Statistics

Scan Statistics on Graphs

Scan Statistics on Enron Graphs
Enron Data
Scan Statistics on Enron Graphs
Anomaly Detection

Conclusions

Kendall Giles Scan Statistics on Enron Graphs 13/35



Enron Email Dataset

I Email to and from senior management, energy traders,
executive assistants, etc.

I From about 1998 - 2002: 189 weeks
I 184 users
I 125,409 distinct messages
I minimal pre-processing done to correct integrity issues
I attachments and content were not used
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Email Time-Series Digraphs

I For each week t = 1, . . . , 189: Dt = (V , At)

I |V | = 184
I At : (v , w) ∈ At ⇐⇒

v sends w at least one email during the t th week
I assume short-time stationarity under the null

Time-dependent scale-k locality statistic:

Ψk ,t(v) = |A(Ω(Nk [v ; Dt ]))|

Ψ0,t(v) ≡ outdegree(v ; Dt)

Mk ,t = maxvΨk ,t(v)
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Vertex-Dependent Standardized Locality and Scan
Statistics

I Ψ̃k ,t(v) = (Ψk ,t(v)− µ̂k ,t ,τ (v))/max(σ̂k ,t ,τ (v), 1)

I µ̂k ,t ,τ (v)) = 1
τ

∑t−1
t ′=t−τ Ψk ,t ′(v)

I σ̂2
k ,t ,τ (v) = 1

τ−1
∑t−1

t ′=t−τ (Ψk ,τ ′(v)− µ̂k ,t ,τ (v))2

standardized scan statistic: M̃k ,t = maxv Ψ̃k ,t(v)
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Raw scan statistics for k = 0, 1, 2
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Standardized scan statistics for k = 0, 1, 2
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Anomaly Detection

temporally-normalized scan statistic:

Sk ,t = (M̃k ,t − µ̃k ,t ,l)/max(σ̃k ,t ,l , 1)

detection: time t such that Sk ,t > 5
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Anomaly Detection

t∗ = 132 (May, 2001)
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Detection Graph D132

arg max
v

Ψ0,132(v) = email83

arg max
v

Ψ1,132(v) = email83

arg max
v

Ψ2,132(v) = email147

arg max
v

eΨ0,132(v) = email147

arg max
v

eΨ1,132(v) = email75

arg max
v

eΨ2,132(v) = email90
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Detection Graph Details
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Anomaly Detection (Aliasing)

I v∗ = arg max
v

Ψ̃2,132(v) = email90

I k..allen == phillip.allen?
I k..allen had no activity before t∗ = 132
I at t∗ = 132, phillip.allen switched to k..allen
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New York Times
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New York Times
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www.enronfraud.com
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Anomaly Detection (Chatter)

Want detection with excess activity due to chatter amongst the
2-neighbors:

Ψ̃′
t(v) = (Ψ̃2,t(v)· =t ,τ (v))/max(γt(v), 1)

=t ,τ (v) = I1 × I2 × I3
I I1 = I{µ̂0,t ,τ > c1}
I I2 = I{Ψ0(v) < σ̂0,t ,τ (v)c2 + µ̂0,t ,τ (v)}
I I3 = I{Ψ1(v) < σ̂1,t ,τ (v)c3 + µ̂1,t ,τ (v)}

γt(v) is an "inhomogeneity penalty"
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Anomaly Detection (Chatter)
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Anomaly Detection (Chatter)

Ω109
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Anomaly Detection (Chatter)

Ω108
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Conclusions

I scan statistics seems to show promise for detecting
anomalies in time series of graphs

I many extentions
I look for upcoming work on content and scan statistics for

Enron graphs
I work being done using scan statistics for anomaly

detection in genetic networks and other application areas
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For Futher Information

Including access to the Enron datasets:

I http://www.cis.jhu.edu/ parky/Enron/enron.html
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Thank you.

Scan Statistics on Enron Graphs

Kendall Giles

kgiles@cs.jhu.edu

www.kendallgiles.com
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